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Abstract A hybrid explicit sixth algebraic order four-step method with phase-lag and
its first, second and third derivatives vanished is obtained in this paper. We present the
development of the new method, its comparative error analysis and its stability analy-
sis. The resonance problem of the Schrödinger equation, is used in order to study the
efficiency of the new developed method. After the presentation of the theoretical and
the computational results it is easy to see that the new constructed method is more effi-
cient than other well known methods for the approximate solution of the Schrödinger
equation and related initial-value or boundary-value problems with periodic and/or
oscillating solutions.
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1 Introduction

In the present paper we investigate the efficient numerical solution of special second-
order initial-value or boundary-value problems of the form

p′′(x) = f (x, p), p(x0) = y0 and p′(x0) = y′
0 (1)

with a periodical and/or oscillatory solutions.
The main feature of this category of problems is that the system of ordinary differ-

ential equations which describe the above mathematical models are of second order
in which the first derivative p′ does not appear explicitly (see for more details [1–120]
and references therein).

In Fig. 1, we present the structure of the present paper which is based on the
following sections:

In Sect. 2, we present some bibliography on the subject of the research of this
paper. Some points of the phase-lag analysis of the symmetric multistep methods are
presented in Sect. 3. In Sect. 4 we present the development of the new hybrid explicit
four-step method. The comparative error analysis is studied in Sect. 5. In Sect. 6 the
stability analysis is described. Finally, in Sect. 7 we present the numerical results
produced by the application of the new obtained methods to the resonance problem
of the one-dimensional Schrödinger equation. In the same section we comment the

Fig. 1 Flowchart of the
formulation of the present paper
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comparative application of the new produced method with other well know methods
in the literature.

2 Bibliography relevant on the subject of the paper

The approximate solution of the radial time independent Schrödinger equation and
the numerical solution of related problems was the subject of extended research the
last decades.

The main directions of this research are presented in Fig. 2. The aim and scope
of this research was the construction of efficient, fast and reliable algorithms (see for
example [1–113]).

Below we give some bibliography on this research:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta–Nyström type have been obtained in [1–7].

– In [8–13] exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta–Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [26–54].

– Symplectic integrators are investigated in [55–83].
– Exponentially and trigonometrically multistep methods have been produced in

[86–106].
– Nonlinear methods have been studied in [107] and [108]
– Review papers have been presented in [109–113]
– Special issues and Symposia in International Conferences have been developed

on this subject (see [32,33])

Fig. 2 The main categories of the methods developed the last decades
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3 Phase-lag analysis for symmetric multistep finite difference methods

Multistep finite difference methods which can be written in the form

m∑

i=0

ci pn+i = h2
m∑

i=0

bi f (xn+i , pn+i ) (2)

are used for the approximate solution of the initial value problems of the form (1).
We mention that in the formula (2),

– m means the number of steps over the equally spaced intervals {xi }m
i=0 ∈ [a, b]

– h = |xi+1 − xi |, i = 0(1)m − 1, where h is called stepsize of integration

In the case of symmetric multistep finite difference method we have ci = cm−i and
bi = bm−i , i = 0(1)�m

2 �.
It is known from the literature (see for details [14]) that the multistep finite difference
methods of the form (2) are associated with the operator

L(x) =
m∑

i=0

ci p(x + i h) − h2
m∑

i=0

bi p′′(x + i h) (3)

where p ∈ C2.

Definition 1 [21] The multistep finite difference method (2) is called algebraic of
order q if the associated linear operator L vanishes for any linear combination of the
linearly independent functions 1, x, x2, . . . , xq+1.

Now we consider the symmetric 2 k-step finite difference method, that is for i =
−k(1)k. If we apply this method to the scalar test equation

y′′ = −ω2 y (4)

the following difference equation is obtained:

Ak(v) pn+k + · · · + A1(v) pn+1 + A0(v) pn + A1(v) pn−1 + · · · + Ak(v) pn−k = 0

(5)

where

1. v = ω h,
2. h is the step length and
3. A j (v) j = 0(1)k are polynomials of v.

Remark 1 The characteristic equation:

Ak(v) λk + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Ak(v) λ−k = 0 (6)

is associated with (5).
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Lambert and Watson [14] introduced the following definition:

Definition 2 A symmetric 2 k-step finite difference method with characteristic equa-
tion given by (6) is said to have an interval of periodicity (0, v2

0) if, for all v ∈ (0, v2
0),

the roots λi , i = 1(1)2 m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2 m (7)

where θ(v) is a real function of v.

Definition 3 [24,25] For any finite difference method corresponding to the charac-
teristic Eq. (6) the phase-lag is defined as the leading term in the expansion of

t = v − θ(v) (8)

Then if the quantity t = O(vr+1) as v → ∞, the order of phase-lag is r .

Definition 4 [22] Phase-fitted is called a method for which the phase-lag vanishes.

Theorem 1 [24] The symmetric 2 k-step finite difference method with characteristic
equation given by (6) has phase-lag order r and phase-lag constant c given by

− cvr+2 + O(vr+4) = 2 Ak(v) cos(k v) + · · · + 2 A j (v) cos( j v) + · · · + A0(v)

2 k2 Ak(v) + · · · + 2 j2 A j (v) + · · · + 2 A1(v)

(9)

The above theorem gives us a direct formula for the computation of the phase-lag of
any symmetric 2 k-step finite difference method.

Remark 2 If we have a symmetric four-step finite difference method (i.e. for k = 2),
and based on the above theorem, we have the direct formula for the computation of
the phase-lag for this class of methods. Based on the above theorem, in the case of
four-step symmetric finite difference methods, the phase-lag order r and phase-lag
constant c can be computed by the direct formula:

− cvr+2 + O(vr+4) = 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
(10)

4 The family of hybrid explicit four-step methods with vanished phase-lag and
its first, second and third derivatives

Consider the following explicit symmetric 2 m-step finite difference method:

pn+m +
m−1∑

i=0

ci (pn+i + pn−i ) + pn−m = h2
m−1∑

i=1

bi
[

f (xn+i , pn+i )+ f (xn−i , pn−i )
]

+b0 f (xn, pn) (11)
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Now we can produce from the above form (11) the specific case of m = 2. Then, we
have the following form of the explicit symmetric four-step finite difference methods
[21]:

pn+2 + c1 (pn+1 + pn−1) + c0 pn + qn−2 = h2
[

b1 ( fn+1 + fn−1) + b0 fn

]

(12)

where fi = y′′ (xi , pi ) , i = n − 1(1)n + 1.
We introduce now the new proposed hybrid (nonlinear) explicit symmetric four-step

finite difference method:

p̄n = pn − c2 h2
(

fn+1 − 2 fn + fn−1

)

pn+2 + c1 (pn+1 + pn−1) + c0 pn + qn−2 = h2
[

b1 ( fn+1 + fn−1) + b0 f̄n

]

(13)

Choosing (13), we consider:

c1 = − 1

10
(14)

Remark 3 The above mentioned value for the free parameter c1 is based on the paper
[21] where it has been proved that the above value of c1 gives for the method (12) the
highest accuracy.

Demanding the above hybrid explicit method to have the phase-lag and its first,
second and third derivatives vanished, the following system of equations is produced:

Phase-Lag (PL) = T1

39
5 + 2 v2

(
v2 b0 c2 + b1

) = 0

First Derivative of PL = − T2
(

10 v4 b0 c2 + 10 v2 b1 + 39
)2 = 0

Second Derivative of PL = − T3
(

10 v4 b0 c2 + 10 v2 b1 + 39
)3 = 0

Third Derivative of PL = T4
(

10 v4 b0 c2 + 10 v2 b1 + 39
)4 = 0 (15)

where Ti , i = 1(1)4 are given in the Appendix A.
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We solve the above system of equations and we obtain the coefficients of the new
proposed method:

b0 = T5

T6
, b1 = T7

T8

c0 = T9

T10
, c2 = T11

T12
(16)

where Ti , i = 5(1)10 are given in the Appendix B.
The following Taylor series expansions should be used in the cases that the formulae

given by (16) are subject to heavy cancellations for some values of |v|:

b0 = 5

4
+ 23

560
v4 − 1259

100800
v6 + + 9967

53222400
v8

− 189179

3492720000
v10 + 7772041

2615348736000
v12

+ 434711603

635156121600000
v14 + 11249576581

118266069841920000
v16

+ 96270093790883

14050009097220096000000
v18 + · · ·

b1 = 53

40
− 23

1120
v4 − 121

201600
v6 − 713

21288960
v8

+ 236861

27941760000
v10 + 9724763

5230697472000
v12

+ 143249983

684014284800000
v14 + 4303500293

394220232806400000
v16

− 2148508540481

2161539861110784000000
v18 + · · ·

c0 = −9

5
+ 23

6720
v8 − 109

1008000
v10 + 41

3193344
v12

− 10583

5588352000
v14 − 29369

116237721600
v16

− 219269

8420630400000
v18 + · · ·

c2 = − 161

3000
+ 23

2100
v2 + 19493

12600000
v4 − 80437069

87318000000
v6

+ 30323213

498960000000
v8 + 43592759593

1059458400000000
v10

− 35200693505111

3241942704000000000
v12 − 681898980020813647

1280599787507040000000000
v14

+ 6652855944464510537

9313453000051200000000000
v16

− 138937971439830114649523

1484471273678160768000000000000
v18 + · · · (17)
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Fig. 3 Behavior of the coefficients of the new proposed method given by (16) for several values of v = ω h

The behavior of the coefficients is given in the following Fig. 3.
The new obtained method (12) (mentioned as Four StepI ) with the coefficients

given by (16) and (17) has a local truncation error which is given by:

LT EFour Step New H ybrid = 23 h8

6720

(
p(8)

n + 4 ω2 p(6)
n + 6 ω4 p(4)

n + 4 ω6 p(2)
n + ω8 pn

)

+O
(
h10) (18)

5 Comparative error analysis

We will study two classes of methods:

– Explicit linear four-step methods of algebraic order four and
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– The new hybrid (nonlinear) explicit four-step method of algebraic order six

Therefore, we will investigate the following cases:

5.1 The fourth algebraic order classical method (i.e. the method (12) with constant
coefficients)

LT EC L = 161 h6

2400
p(6)

n + O
(

h8
)

(19)

5.2 The fourth algebraic order method with vanished phase-lag produced in [21]

LT EMeth AnasSim = 161 h6

2400

(
p(6)

n + ω2 p(4)
n

)
+ O

(
h8

)
(20)

5.3 The fourth algebraic order method with vanished phase-lag and its first
derivative produced in [49]

LT EFour StepI = 161 h6

2400

(
p(6)

n + 2 ω2 p(4)
n + ω4 p(2)

n

)
+ O

(
h8

)
(21)

5.4 The fourth algebraic order method with vanished phase-lag and its first and
second derivatives in [53]

LT EFour StepI I = 161 h6

2400

(
p(6)

n + 3 ω2 p(4)
n + 3 ω4 p(2)

n + ω6 pn

)
+ O

(
h8

)

(22)

5.5 The sixth algebraic order hybrid method with vanished phase-lag and its first,
second and third derivatives developed in Sect. 4

LT EFour StepI I I = 23 h8

6720

(
p(8)

n + 4 ω2 p(6)
n + 6 ω4 p(4)

n + 4 ω6 p(2)
n + ω8 pn

)

+O
(

h10
)

(23)

The procedure contains the following stages

– The radial time independent Schrödinger equation is of the form

p′′ (x) = f (x) p (x) (24)

– Based on the paper of Ixaru and Rizea [86], the function f (x) can be written in
the form:

f (x) = g(x) + G (25)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = ω2 = Vc − E .
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Fig. 4 Flowchart for the
comparative error analysis

– We express the derivatives p(i)
n , i = 2, 3, 4, . . ., which are terms of the local

truncation error formulae, in terms of the Eq. (25). The expressions are presented
as polynomials of G

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae

For the error analysis we follow the flowchart mentioned in the Fig. 4.
Based on the Eq. (25), we calculate the derivatives which presented in the formulae

of the local truncation errors:

p(2)
n = (V (x) − Vc + G) p(x)

p(3)
n =

(
d

dx
g (x)

)
p (x) + (g (x) + G)

d

dx
p (x)

p(4)
n =

(
d2

dx2 g (x)

)
p (x) + 2

(
d

dx
g (x)

)
d

dx
p (x)

+ (g (x) + G)2 p (x)

p(5)
n =

(
d3

dx3 g (x)

)
p (x) + 3

(
d2

dx2 g (x)

)
d

dx
p (x)

+4 (g (x) + G) p (x)
d

dx
g (x) + (g (x) + G)2 d

dx
p (x)

p(6)
n =

(
d4

dx4 g (x)

)
p (x) + 4

(
d3

dx3 g (x)

)
d

dx
p (x)
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+7 (g (x) + G) p (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

p (x)

+6 (g (x) + G)

(
d

dx
p (x)

)
d

dx
g (x)

+ (g (x) + G)3 p (x)

p(7)
n =

(
d5

dx5
g (x)

)
p (x) + 5

(
d4

dx4 g (x)

)
d

dx
p (x)

+11 (g (x) + G) p (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
p (x)

d2

dx2 g (x) + 13 (g (x) + G)

(
d

dx
p (x)

)
d2

dx2 g (x)

+10

(
d

dx
g (x)

)2 d

dx
p (x) + 9 (g (x) + G)2 p (x)

d

dx
g (x) + (g (x) + G)3 d

dx
p (x)

p(8)
n =

(
d6

dx6 g (x)

)
p (x) + 6

(
d5

dx5
g (x)

)
d

dx
p (x)

+16 (g (x) + G) p (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
p (x)

d3

dx3 g (x) + 24 (g (x) + G)

(
d

dx
p (x)

)
d3

dx3 g (x)

+15

(
d2

dx2 g (x)

)2

p (x) + 48

(
d

dx
g (x)

)

(
d

dx
p (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 p (x)

d2

dx2 g (x) + 28 (g (x) + G) p (x)

(
d

dx
g (x)

)2

+12 (g (x) + G)2
(

d

dx
p (x)

)
d

dx
g (x)

+ (g (x) + G)4 p (x)

. . .

For the completion of the comparative error analysis which is based on the mathe-
matical models expressed via the Eq. (24), we follow the procedure described below:

1. We study two cases in terms of the value of E within the local truncation error
analysis:
a) The energy is close to the potential, i.e. G = Vc − E ≈ 0. Consequently, the

free terms of the polynomials in G are considered only. Thus, for these values
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of G, the methods are of comparable accuracy. This is because the free terms
of the polynomials in G are the same for the cases of the classical method and
of the methods with vanished the phase-lag and its derivatives.

b) G >> 0 or G << 0. Then |G| is a large number.
2. Finally we compute the asymptotic expansions of the local truncation errors

The analysis presented above leads to the following asymptotic expansions of the
local truncation errors:

5.6 Classical method

LT EC L = h6
(

161

2400
p (x) G3 + · · ·

)
+ O

(
h8

)
(26)

5.7 The method with vanished phase-lag produced in [21]

LT EMeth AnasSim = h6
(

161

2400
g (x) p (x) G2 + · · ·

)
+ O

(
h8

)
(27)

5.8 The method with vanished phase-lag and its first derivative produced in [49]

LT EFour StepI = h6
[(

161

2400
(g (x))2 p (x) + 161

1200

(
d

dx
g (x)

)
d

dx
p (x)

+161

480

(
d2

dx2 g (x)

)
p (x)

)
G + · · ·

]
+ O

(
h8

)
(28)

5.9 The method with vanished phase-lag and its first and second derivatives
developed in [53]

LT EFour StepI I = h6
(

161

600

(
d2

dx2 g (x)

)
p (x) G + · · ·

)
+ O

(
h8

)
(29)

5.10 The sixth algebraic order hybrid method with vanished phase-lag and its first,
second and third derivatives developed in Section 4

LT EFour StepI I I = 23

6720
h8

[[
12

(
d4

dx4 g (x)

)
p (x)

+8

(
d3

dx3 g (x)

)
d

dx
p (x) + 16 g (x) p (x)

d2

dx2 g (x)

+12

(
d

dx
g (x)

)2

p (x)

]
G + · · ·

]
+ O

(
h8

)
(30)

From the above equations we have the following theorem:
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Theorem 2 – Fourth algebraic order methods: for the classical four-step explicit
method, the error increases as the third power of G. For the four-step explicit
phase-fitted method developed in [21], the error increases as the second power of
G. For the four-step explicit method with vanished phase-lag and its first deriva-
tive obtained in [49], the error increases as the first power of G. For the four-step
explicit method with vanished phase-lag and its first and second derivatives pro-
duced in [53], the error increases as the first power of G but it has lower coefficients
than the method developed in [49].

– Sixth algebraic order methods: for the four-step hybrid explicit method with van-
ished phase-lag and its first, second and third derivatives produced in Sect. 4, the
error increases as the first power of G.

So, for the numerical solution of the time independent radial Schrödinger equation
the method developed in Sect. 4 with vanished phase-lag and its first, second and third
derivatives is the most efficient from theoretical point of view, especially for large
values of |G| = |Vc − E |.

6 Stability analysis

The stability analysis of the new hybrid four-step explicit method is based on the
Flowchart mentioned in the Fig. 5.

Based on the above flowchart, and in order to study the stability of the new developed
hybrid method, we apply it to the scalar test equation:

Fig. 5 Flowchart for the
stability analysis of the new
proposed method
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p′′ = −φ2 p. (31)

This leads to the following difference equation:

A2 (s, v) (pn+2 + pn−2) + A1 (s, v) (pn+1 + pn−1) + A0 (s, v) pn = 0 (32)

where s = φ h, v = ω h and

A2 (s, v) = 1, A1 (s, v) = c1 + s2
(

b0 c2 s2 + b1

)

A0 (s, v) = c0 + s2 b0

(
−2 c2 s2 + 1

)
(33)

where ci , i = 0(1)2 b j , j = 0, 1 are given in (16) and (17).

Remark 4 We mention that the frequency of the scalar test Eq. (4), ω, is not equal
with the frequency of the scalar test Eq. (31), φ, i.e. ω 
= φ.

We give the following definitions:

Definition 5 (see [14]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 6 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 6 we present the s − w plane for the method developed in this paper.

Remark 5 A shadowed region declares the s − v area where the method is stable,
while a white area declares the area where the method is unstable.

Remark 6 From the s −v area one can chose several parts depending on mathematical
model of the specific problem. The time independent Schrödinger equation belongs to a
category of mathematical models where it is appropriate to observe the surroundings
of the first diagonal of the s − v plane. In these categories of mathematical models
in order to apply the new obtained methods, the frequency of the phase fitting must
be equal to the frequency of the scalar test equation.

For the time independent Schrödinger equation and due to the above mentioned
remark, the frequency of the scalar test equation is equal with the frequency of phase
fitting. Therefore, we investigate the case where s = v (i.e. see the surroundings of
the first diagonal of the s − v plane). Based on this study we obtain that the interval
of periodicity of the new method produced in Sect. 4 are equal to: (0, 4.2).

The above investigation leads to the following theorem:

1 Where S is a set of distinct points
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Fig. 6 s − v plane of the the new obtained method with vanished phase-lag and its first and second
derivatives

Theorem 3 The method produce in Sect. 4:

– is of sixth algebraic order,
– has the phase-lag and its first, second and third derivatives equal to zero
– has an interval of periodicity equals to: (0, 4.2) when the frequency of the scalar

test equation is equal with the frequency of phase fitting

7 Numerical results

In this section we will apply the new developed sixth algebraic order explicit hybrid
four-step method on the approximate solution the one-dimensional time-independent
Schrödinger equation. The main purpose of this application is the examination of the
efficiency of the new constructed method.

The mathematical model of the one-dimensional time independent Schrödinger
equation can be written as (see [122–125]):

p′′(r) = [l(l + 1)/r2 + V (r) − k2]p(r). (34)

The above mathematical model is a boundary value problem which has the following
boundary conditions:

p(0) = 0 (35)
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and another boundary condition, for large values of r , determined by physical prop-
erties of the specific problem.

Below we give some definitions of the functions, quantities and parameters for the
above mathematical model (34):

1. The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

2. The quantity k2 is a real number denoting the energy,
3. The quantity l is a given integer representing the angular momentum,
4. V is a given function which denotes the potential.

The new produced method, since it belongs to the category of methods with fre-
quency dependent coefficients, has a parameter ω, which is called frequency, which
must be determined. The determination of this parameter ω is necessary in order the
new obtained method to be applied to any problem (see for example the notation after
(4) and the formulae in Sect. 4). This parameter ω for the case of the radial time
independent Schrödinger equation is given by (for l = 0):

ω =
√

|V (r) − k2| = √|V (r) − E | (36)

where V (r) is the potential and E is the energy.

7.1 Woods–Saxon potential

In order to apply the new developed method to the radial time independent Schrödinger
equation, we need to define a potential. For the purpose of the numerical applications
of this paper, we will use the well known Woods–Saxon potential, which can be written
as:

V (r) = u0

1 + q
− u0 q

a (1 + q)2 (37)

with q = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods–Saxon potential is shown in Fig. 7.
There are studies in the literature where critical points of some potentials are pre-

sented. These points are used in order one to use for for discrete approximations.
Based on analogous studies (see for details [112]) we use such critical points for the
Woods–Saxon potential for the discrete approximation of the parameter ω.

Based on the investigations mentioned above and for the purpose of our tests, we
choose ω as follows (see for details [121] and [86]):

φ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(38)

123



1706 J Math Chem (2014) 52:1690–1716

-50

-40

-30

-20

-10

0
2 4 6 8 10 12 14

r

The Woods-Saxon Potential

Fig. 7 The Woods–Saxon potential

For example, in the point of the integration region r = 6.5 − h, the value of φ is
equal to:

√−37.5 + E . So, w = φ h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of φ is equal to:

√−50 + E , etc.

7.2 Radial Schrödinger equation: the resonance problem

In order to investigate the efficiency of the new produced method, the numerical
solution of the radial time independent Schrödinger Eq. (34),with the Woods–Saxon
potential (37), is studied.

7.3 Strategy of the numerical solution

The conversion of the infinite interval of integration (which is the true interval of
integration) to a finite one is a basic part of the strategy for the numerical solution of
the above mentioned problem.

For our computational example we choose the integration interval r ∈ [0, 15].
We will investigate the case of Eq. (34) in a rather large domain of energies, i.e.

E ∈ [1, 1000].
In the case of positive energies, E = k2, the potential decays faster than the term

l(l+1)

r2 and the radial time independent Schrödinger equation effectively reduces to

y′′ (r) +
(

k2 − l(l + 1)

r2

)
y (r) = 0 (39)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.
Thus, the solution of Eq. (34) (when r → ∞), has the asymptotic form
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y (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(40)

where δl is the phase shift that may be calculated from the formula

tan δl = y (r2) S (r1) − y (r1) S (r2)

y (r1) C (r1) − y (r2) C (r2)
(41)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
y j , j = 0, (1)3 before starting a four-step method. From the initial condition, we
obtain y0. The values yi , i = 1(1)3 are obtained by using high order Runge–Kutta–
Nyström methods (see [118] and [119]). With these starting values, we evaluate at r2
of the asymptotic region the phase shift δl .

In the case of positive energies, we have the so-called resonance problem. This
problem consists either of finding the phase-shift δl or finding those E , for E ∈
[1, 1000], at which δl = π

2 . We actually solve the latter problem, known as the
resonance problem.

The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)

for large r. (42)

We compute the approximate positive eigenenergies of the Woods–Saxon resonance
problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [15],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [15], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [15],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[28], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [87], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [27], which is indicated as Method MCR6

– The classical form of the fourth algebraic order four-step method developed in
Sect. 3, which is indicated as Method NMCL2.

– The phase-fitted method (Case 1) developed in [21], which is indicated as Method
NMPF1

– The phase-fitted method (Case 2) developed in [21], which is indicated as Method
NMPF2

2 With the term classical we mean the method of Sect. 3 with constant coefficients
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Fig. 8 Accuracy (digits) for several values of C PU time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is <0

– The four-step method with vanished phase-lag and its first derivative (Case 2)
developed in [49], which is indicated as Method NMC2

– The four-step method with vanished phase-lag and its first derivative (Case 1)
developed in [49], which is indicated as Method NMC1

– The four-step method with vanished phase-lag and its first and second derivatives
developed in [53], which is indicated as Method NMPFD12

– The new hybrid sixth algebraic order four-step explicit method developed in Sect. 4,
which is indicated as Method NMHEPFD123
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Fig. 9 Accuracy (digits) for several values of C PU time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
<0

The approximate calculated eigenenergies are compared with reference values3. In
Figs. 8 and 9, we present the maximum absolute error Errmax = |log10 (Err) | where

Err = |Ecalculated − Eaccurate| (43)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

3 The reference values are computed using the well known two-step method of Chawla and Rao [27] with
small step size for the integration
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8 Conclusions

In the present paper we produced a hybrid explicit sixth algebraic order four-step
method which was based on the family of methods studied by Anastassi and Simos
[21]. The aim and scope of the present paper was the study of the vanishing of the
phase-lag and its first, second and third derivative of the obtained method. For the
new developed method we presented a comparative error and stability analysis. The
examination of the behavior of the vanishing of the phase-lag and its first, second
and third derivatives on the efficiency of the new produced method we have applied it
to the approximate solution of the radial time independent Schrödinger equation and
related problems.

From the results presented above, we can make the following remarks:
1. The classical form of the tenth algebraic order four-step multiderivative method

developed in Sect. 3, which is indicated as Method NMCL is more efficient than
the fourth algebraic order method of Chawla and Rao with minimal phase-lag
[28], which is indicated as Method MCR4. Both the above mentioned methods
are more efficient than the exponentially-fitted method of Raptis and Allison [87],
which is indicated as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[15], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [28], which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [15], which is indicated as
Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao with minimal phase-lag
[27], which is indicated as Method MCR6 for large CPU time and less efficient
than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[15], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [15], which is indicated as
Method QT10

4. The phase-fitted method (Case 1) developed in [21], which is indicated as Method
NMPF1 is more efficient than the classical form of the fourth algebraic order
four-step method developed in Sect. 3, which is indicated as Method NMCL, the
exponentially-fitted method of Raptis and Allison [87] and the phase-fitted method
(Case 2) developed in [21], which is indicated as Method NMPF2

5. The four-step method with vanished phase-lag and its first derivative (Case 2)
developed in [49], which is indicated as Method NMC2 is more efficient than the
classical form of the fourth algebraic order four-step method developed in Sect. 3,
which is indicated as Method NMCL, the exponentially-fitted method of Raptis
and Allison [87] and the phase-fitted method (Case 2) developed in [21], which is
indicated as Method NMPF2 and the phase-fitted method (Case 1) developed in
[21], which is indicated as Method NMPF1

6. The four-step method with vanished phase-lag and its first derivative (Case 1)
developed in [49], which is indicated as Method NMC2, is the more efficient than
all the above mentioned methods.
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7. The four-step method with vanished phase-lag and its first and second derivatives
developed in developed in [53], which is indicated as Method NMPFD12 is more
efficient than all the above mentioned methods

8. The new obtained hybrid explicit sixth algebraic order dour-step method with van-
ished phase-lag and its first, second and third derivatives developed in developed
in Sect. 4, which is indicated as Method NMHEPFD123 is the most efficient one

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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